

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015

 ISSN: 2395-3470
www.ijseas.com

478

Design and Implementation of General Purpose Input Output
(GPIO) Protocol
 Bhavnil Patel P

1
P , Bhargav TarparaP

2

P

1
P M.Tech. VLSI, U.V.Patel college of2T 2TEngineering and Technology, Kherva, Mehsana, India

P

2
PVerification Technical Assistant

42TAbstract 42T— General purpose input/output
(GPIO) is a generic pin on an integrated
circuit (IC) whose behavior, including
whether it is an i/o pin, that can be controlled
by the user at run time. GPIO pins have no
special purpose defined, and by default
unused. The idea after that sometimes the
system integrator building a full system that
accustom the chip might find it useful to have
a handful of immense digital control lines,
and having these accessible from the chip can
save the hassle of having to arrange
additional circuitry to give them. In this
paper i have tried to implement GPIO design
using FPGA (Field Programmable Gate
Array).That design check throw Directed
Test case and apply that RTL(Register
Transfer Level) in Physical Design (Backend
side) so a complete ASIC (Application
Specific Integrated Circuit) cycle.

42TKeywords 42T—General Purpose Input/output
(GPIO), Integrated Circuit (IC), Field
Programmable Gate Array (FPGA), Register
Transfer Level (RTL),Application Specific
Integrated Circuit (ASIC), Advanced Peripheral
Bus (APB), Advanced Microcontroller Bus
Architecture (AMBA), Universal Verification
Methodology (UVM)

I. INTRODUCTION
A General Purpose Input/output (GPIO)

is an interface available on latest
microcontrollers (MCU) to provide an ease of
access to the devices internal properties.
Generally there are multiple GPIO pins on a
single MCU for the use of different interaction
so concurrent application. The GPIO IP core is
user-programmable general-purpose I/O
controller. It is used to mechanism functions that
are not implemented with the dedicated

controllers in a system and necessary simple
input and/or output software controlled signals
[1].

 The pins can be programmed as input,
where data from several external source is being
fed into the system to be flexible at a desired
time and location. Output can also be execute on
GPIOs, where formatted date can be transmitted
efficiently to outside devices, this provides a
simple implement to program and re transmit
data depending on user desires through a single
port interface. The pins are generally arranged
into groups of 8 pins where signals can be sent
or received to and from other sources [1].

In many applications, the GPIOs can be

configured as interrupt lines for a CPU to signal
immediate processing of input lines. In many
designs, they also have the ability to control and
utilize Direct Memory Access (DMA) to
transfer blocks of data in a more effectively.
Significantly all ports can be tailored to fit
specific design aims and serve reusability within
applications [1].

Every GPIO port can be configured for

i/o or bypass mode. All output data can be set in
one access Single or multiples bits can be set or
cleared independently. Each GPIO port can
provide an interrupt source and has its own
configuration options:

1.Level sensitive, single edge triggered or

level change.
2.Active high or low respectively rising edge

or falling edge.
3.Individual interrupt enable register and

status flags.[2]

The core provides several synthesis
options to ease the system integration and
minimize the gate count:

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015

 ISSN: 2395-3470
www.ijseas.com

479

1.Selectable CPU bus width: default options
are 8/16/32-bit.

2.Selectable number of GPIO ports.
3.CPU read back enable.[2]

Figure 1: GPIO module Diagram [2]

Objectives:

 General Purpose I/O (GPIO) pins are
single necessary to give versatile to digital and
analog signals for ADC conversions. To provide
efficiency the signals should be nuclear
controllable on a particular chip board. All
GPIO should be able to define either an input
mode or an output mode for individual pins on
the chip. At last the pins must be extendable for
a wide array of applications and functional uses
that define its generality in use.

Usage:

1.Devices with pin scarcity integrated
circuits such as system-on-a-chip,
embedded and custom
hardware, and programmable logic devices
(for example, FPGAs).

2.Multi-function chips power managers,
audio codecs, and video cards.

3.Embedded applications (for example,
Arduino, BeagleBone, PSoC kits and
Raspberry Pi) make heavy use of GPIO for
reading from various environmental
sensors (IR, video, temperature, 3-axis
orientation, and acceleration), and for
writing output to DC motors (via PWM),
audio, LCD displays, or LEDs for status.

Capability:

1. GPIO pins can be configured to be input
or output.

2. GPIO pins can be enabled/disabled.
3. Input values are like high=1, low=0.
4. Output values are writable/readable
5. Input values can often be used as IRQs

(typically for wakeup events)
6. GPIO peripherals vary absolutely widely.

In some of the cases, they are much
simple, a group of pins which can be
switched as a group to either i/p or o/p. In
others case pins can be set up flexibly to
accept or source different logic voltages
like configurable drive strengths and pull
ups/downs. The input and output voltages
are not in all instances, that is limited to
the supply voltage of the device with the
GPIOs on and may be damaged by greater
voltages.

7. A GPIO pin's state may be exposed to the
software developer through one of a
number of multiple interfaces, like a
memory mapped peripheral, or by
dedicated IO port instructions.

8. A few GPIOs have 5 V tolerant inputs:
even when the device has a low supply
voltage such as 2 V, the device can accept
up to 5 V without damage.

Ports:

A GPIO port is a group of GPIO pins
(typically 8 GPIO pins) manage in a group and
controlled as a group.

The reminder of the paper is organized

as follows section II descried GPIO Architecture
& Block Diagram.

II. GPIO Architecture & Block
Diagram

GPIO Architecture:

 General architecture of GPIO IP core. It
consists of four main building blocks:

1.APB(Master & Slave)
2.GPIO registers
3.Auxiliary inputs
4.Interface to external I/O cells and pads [3]

1. APB:

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015

 ISSN: 2395-3470
www.ijseas.com

480

The APB is part of the AMBA protocol
logic family. It display a chipper interface that is
optimized for minimal power consumption and
reduced interface complexity.

The APB protocol is not pipe lined, APB
use it to connect to lower bandwidth peripherals
which do not wants the high performance of the
AXI protocol.

The APB protocol relates a signal
transition to the rising edge of the clock, to
simplify the integration of APB peripherals into
any design flow. Every transfer takes minimum
2 cycles.[4]

2. GPIO Registers:

The GPIO IP Core has multiple software
accessible registers. Some of them registers have
the same width as no. of general-purpose Input-
Output signals and they are from 0– 31 bits. The
Host through these registers programs type and
operation of each general-purpose Input-Output
Signal.[3]

 Figure 2: GPIO Core Architecture

3. Auxiliary Inputs:

The auxiliary inputs can bypass
RGPIO_OUT outputs based on programming of
RPGIO_AUX register. It can be used to
multiplex other on chip peripheral devices on
GPIO pins.[3]

4. Interface to External I/O Cells and Pads:

External interface connects GPIO core to
external Input-output ring cells and pads. To
assist open drain or 3 state outputs, suitable
open-drain or three-state Input-output cells must

be used. ECLK register is worked as a part of
external interface. Usually register inputs based
on External clock reference.[3]

Features:

1. Number of general-purpose I/O signals is
user selectable and can be in range from 1
to 32. For more I/O multiple GPIO cores
can be used in parallel.

2. Each general-purpose I/O signals can be
bi-directional external bi-directional I/O
Cells are required in this case.

3. Each general-purpose I/O signals can be
three-stated or open-drain enabled
(External 3 state or open-drain Input-
Output cells need in this case).

4. General-purpose I/O signals
programmed as inputs can cause an
interrupt request to the CPU.

5. General-purpose I/O signals
programmed as inputs can be registered at
raising edge of system clock or at user
programmed edge of external clock.

6. All general-purpose I/O signals are
programmed as inputs at hardware reset.

7. Auxiliary inputs to GPIO core to bypass
outputs from RGPIO_OUT register.

8. Alternative input reference clock signal
from external interface.

9. Especially configurable (implementation
of registers, external clock reverse versus
needle flip-flops etc.)

10. APB interface

GPIO Operation:

This section explain the operation of the
GPIO core. The GPIO core provides toggling of
general-purpose outputs and sampling of
general-purpose inputs under software
control.[3]

General-purpose inputs can create

interrupts so that software does not have to be in
poll mode all the time when sampling inputs.[3]

Switching output drivers into open-drain
or 3 state mode will disable general-purpose o/p.
To lower number of pins of the chip, other on-

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015

 ISSN: 2395-3470
www.ijseas.com

481

chip peripherals devices can be multiplexed
each other with the GPIO pins. For this object,
auxiliary inputs can be multiplexed on general-
purpose outputs.

Figure 3: GPIO Block Diagram

GPIO Operations:

• Hardware Reset
• General-Purpose I/O as Polled Input
• General-Purpose I/O as Input in Interrupt

Mode
• General-Purpose I/O as Output
• General-Purpose I/O as Bi-Directional I/O
• General-Purpose I/O driven by Auxiliary

Input.[3]

GPIO Registers:
 This section describes all control and

status register inside the GPIO core.[3]
Name Width Access Description

RGPIO_IN 0 – 31 R GPIO input data

RGPIO_OUT 0 – 31 R/W GPIO output data

RGPIO_OE 0 – 31 R/W GPIO output
driver enable

RGPIO_INTE 0 – 31 R/W Interrupt enable

RGPIO_PTRIG 0 – 31 R/W Type of event
that triggers an
interrupt

RGPIO_AUX 0 – 31 R/W Multiplex
Auxiliary inputs
to GPIO outputs

RGPIO_CTRL 2 R/W Control register

RGPIO_INTS 0 – 31 R/W Interrupt status

Table 1. List of All Software Accessible
Registers [3]

 I/O Ports:

GPIO IP core has three interfaces.

1.APB interface
2.Auxiliary inputs interface
3.Interface to external I/O cells and pads [3]

1.APB interface:

 • Master Description:
APB is a single bus master so there is no

need for an arbiter. The master carry the address
and write buses and also express a conjugative
decode of the address to decide which PSELx
signal to trigger and it is also important for
driving the PENABLE signal to time the
transfer. It carry APB data onto the system bus
during a read transfer.[4]

 • Slave Description:

APB slaves have a much simple and
flexible interface. The perfect implementation
the interface will be dependent on the design
style employed and many non-identical options
are possible. In this two signals are mainly
protect the loss data while transfer of data. They
are PSLVERR and PREADY.[4]

2.Auxiliary inputs:

Auxiliary inputs descried above.

Port Width Direction Description
aux_i 0-31 Inputs GPIO

auxiliary
inputs

 Table 2. Auxiliary input signals [3]

3.Interface to external I/O cells and pads
External interface connects GPIO core to

external I/O ring cells and pads. To assist open
drain or 3 state outputs, I/O cells with open
drain or 3 state used.

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015

 ISSN: 2395-3470
www.ijseas.com

482

Part of external interface is also ECLK
signal. It can be used to register inputs based on
external clock reference.[3]

Port Width Direction Description
in_pad_i 0-31 Inputs GPIO inputs
out_pad_o 0-31 Outputs GPIO outputs
oen_padoen_o 0-31 Outputs GPIO output

drivers
enables (for
three-state or
open-drain
drivers)

ext_clk_pad_i 1 Input Alternative
GPIO inputs'
latch clock

Table 3. External interface [3]

III. GPIO Simulation Results

Figure 4. Simulation result of Input Register

Whenever all APB signal and ext_pad_i
trigger at posedge of PCLK , Data which is
contained by ext_pad_i has been stored to
PRDATA .

Figure 5. Simulation result of Output Register

When all APB signal trigger that time

Data which contained in PWDATA has been
stored to ext_pad_o and PRDATA.

Figure 6. Simulation result of PSLVERR
(Failure)

Over here address of PADDR given

wrong then it shows transfer Failure so
PSLVERR high(1) and PRDATA & ext_pad_o
low(0).

Figure 7. Simulation result of Output Enable
Register

When output enable is trigger then

PWDATA contained has been stored in
ext_padoe_o & PRDATA.

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015

 ISSN: 2395-3470
www.ijseas.com

483

Figure 8. Simulation result of Interrupt status
Register

In this interrupt status shows by IRQ

high, data of PWDATA has been stored in
PRDATA but ext_pad_o low because is show
interrupt cause by input.

CONCLUTION:

This paper gives an outline of the GPIO
Protocol and explain the GPIO working in
detail. The GPIO is designed using the Verilog
HDL according to the specification and is
verified using Xilinx. The simulation results
show that the data write into register and read
form registers, that value stored in a output side.
Hence, the design is functionally correct. Xilinx
also ensures the functional correctness of the
design.

MOTIVATIONAL WORK:

 In this paper, Design of GPIO is verified
though a Direct Test Case in Xilinx. But you can
also verified in UVM by applying a Random or
Direct Test Cases. After verified that design
dump in to Design Complier (DC) and ICC. So,
a full ASIC cycle complete and after that a
design will Tap out.

IV. REFERENCE

[1].Sasang Balachandran, “General Purpose

Input/Output(GPIO)”:
http://www.egr.msu.edu/classes/ece480/caps
tone/fall09/group03/AN_balachandran.pdf
GPIO

[2].INICORE,
http://inicore.com/pdf/act/mb_gpio_mod_act
.pdf

[3]. OpenCores: http://opencores.org
[4]. AMBA Specification: http://www-

micro.deis.unibo.it/~magagni/amba99.pdf
[5]. Chris Spear, ”System Verilog for

Verification”
[6]. Samir Palnitkar ” Verilog HDL A Guide to

Digital Design and Synthesis”

http://www.egr.msu.edu/classes/ece480/capstone/fall09/group03/AN_balachandran.pdf
http://www.egr.msu.edu/classes/ece480/capstone/fall09/group03/AN_balachandran.pdf
http://opencores.org/
http://sphoorthyengg.com/ECEupload/upload/Verilog%20HDL%20A%20Guide%20to%20Digital%20Design%20and%20Synthesis.pdf
http://sphoorthyengg.com/ECEupload/upload/Verilog%20HDL%20A%20Guide%20to%20Digital%20Design%20and%20Synthesis.pdf

	I. Introduction
	[6]. Samir Palnitkar ” Verilog HDL A Guide to Digital Design and Synthesis”

